

 1

Proceedings of the Fourth Systems Reengineering Technology Workshop, NSWC.
John Hopkins University APL Research Center Report RMI-94-003, Monterey CA,

February, 1994.

Knowledge-Based, Metalanguage-Based Object Abstraction
for Automatic Program Transformation

Romel Rivera
Member, IEEE

 1994 Romel Rivera, All Rights Reserved

Xinotech Research, Inc.
1313 Fifth Street Southeast. Suite 213

Minneapolis, MN 55414
romel.rivera@xinotech.com

Abstract

This paper describes Xinotech Research's knowledge
based, metalanguage-based programming environment to
support automatic program transformation and object ab-
straction for forward and reverse engineering. In this envi-
ronment. both knowledge extraction and knowledge ab-
straction are metalanguage-based and thus language inde-
pendent. The transformation engine is accessible through
the interactive syntax-directed tools for program construc-
tion or for massive reengineering. This transformation
infrastructure is operational for Ada, and can be applied to
transform existing programs to support object-oriented
methodologies, to port existing software to new libraries
and platforms, to translate automatically between lan-
guages. to change the meaning of programs, or to enforce
the semantics of applications or programming standards. It
also supports specification and prototyping languages, and
can be retargeted to other programming languages.

1. Introduction

"By now it is hard to imagine that any computer
professional has not become aware of the bottleneck in
software development. For both commercial and govern-
ment applications, the annual bill for software is rising at a
rapid pace. For example, the U.S. Department of Defense
(DoD) spent over $3 billion on software in 1980 and their
expenses are projected to grow to $30 billion per year by
1990 (DoD Annual report FY '81). Moreover, these costs
are only the tip of the iceberg, as the impact of faulty
software, delayed software, and continuing maintenance
Costs drive the real costs even higher" [12].

Ten years later, K.A. Banniuck confirms the above
prediction. His study estimates that software expenditures
in 1990 were over $185 billion worldwide with approxi-
mately $90 billion being spent in the U.S., and of that, $27
billion spent by the DoD. [2]

"We might well ask, why this phenomenal growth in
the cost of software? There are several major reasons. One
is the fact that the requirements for new software systems
are more complex than ever before. A second reason for
the rising cost of software is the increased demand for
qualified software professionals. A third reason, is the fact
that our software development tools and methodologies
have not continued to dramatically improve our ability to
develop software.

"...It has for a long time been recognized that one
fundamental weakness of software creation is the fact that
an entirely new software system is usually constructed
'from scratch'. This is clearly an unfortunate situation, as
studies have shown that much of the code of one system is
virtually identical to previously written code. For
example, a study done at the Missile Systems Division of
Raytheon Company observed that 40-60 percent of actual
program code was repeated in more than one application
[11]. Therefore the idea of reusability would seem to hold
one answer to increasing software productivity. And yet
the simple notion of reusability (i.e., code reusability) has
been considered by computer professionals over the years
but has never been entirely successful." [12]

Methodologies for reusability must be seamlessly in-
tegrated into the design, coding, testing and maintenance
phases of the software cycle, which according to E.
Horowitz [12], account for 87% of the total life-cycle
effort.

Any methodology that can be proposed, could fail to
be implemented if it is not supported by tools that synthe-
size software understanding and automate the transforma-
tion of programs so that reusability and modernization
techniques can be applied automatically and on a large
scale. The task of manual application of evolutionary
transformations on large software systems would be found
overwhelming and quickly discarded. The problem is that
in order to create these tools, they need to be supported by
an environment infrastructure with the following proper-
ties:

 2

1. Structural and semantic knowledge of the programming
language (e.g. Ada).

2. Reusable language knowledge that:
i. Supports quick fabrication of a multitude of lan-

guage tools outside the realm of language transla-
tion, and

ii. Allows customization of the created tools.
3. Formal Specifications. The production of language tools

requires that the realization of structural and semantic
language rules be available to the tool designer so that
they can be applied to implement particular
transformations, measurements and analyses, infer or
complement other rules, etc. For example, a successful
environment must provide the ability to specify new
applications such as transformations to modularize
source code, thus complementing the typical, hard-
coded, predefined functions of object code generation.
Language knowledge reusability is best supported by a
system where languages can be defined with formal
specifications, independent and separate from the
application tools.

4. If forward and reverse engineering tasks are to be
unified, it is essential that certain tools be interactive.
This means that the formal mechanisms to manipulate
language structures must be incremental. Traditionally,
incrementality has been supported through domain-
dependent, algorithmic approaches. For the sake of
generality, it is desirable that incrementality be derived
from the semantics of the metalanguage. From these
requirements, it is clear why language-based tools to
automate the otherwise impossible task of manual
transformation of source code have not proliferated and
matured.

2. The Xinotech Environment

The environment is designed to be language-
independent. Knowledge extraction (e.g. parsing, creating
abstract syntax trees, and deriving semantic attributes) is
expressed using a formal notation called XinoML, the
Xinotech Meta-Language. Knowledge abstraction (the
process of recognizing program patterns and transforming
them into higher-level structures) is expressed through an
XinoML component called XPAL, the Xinotech Pattern
Abstraction Language. The system can thus be re-targeted
for other languages and applications at a fraction of the
original cost.

XPAL is designed to express complex program pat-
terns and to specify transformations of these patterns into
more cohesive higher-level concepts. The alternative ap-
proach of using an intermediate "universal" language to
which programs are first transformed, causes the unneces-
sary loss of the original model and still does not provide
the means to tailor transformations.

Only with a pattern language does the task of
specifying a vast evolving library of patterns and their
transformations become feasible, allowing pattern
specification to become an application-oriented task.

XPAL makes use of a complete semantic notation
and a comprehensive semantic library. Because XPAL is a
component of XinoML, the extraction meta-language,
XPAL has access to XSSL (XinoML's semantic notation)
as well as all of the semantic equations written to properly
define a particular programming language. For example,
writing patterns that require the use of language scoping
rules can be done by simply referring to the corresponding
semantic equations.

XPAL transformations can also be used as the
vehicle to formalize and document the implicit relations
needed to abstract object oriented (00) models from non-
00 programs.

The environment is designed to support interactive
software development, including syntax-directed
construction, graphical abstraction, and standards and
guidelines detection and enforcement. All these tools are
built on top of the metalanguage engine. Pattern
transformations are available interactively through these
tools' user interfaces. Transformation libraries have been
developed to support object orientation, conversion to Ada
9X from Ada 83, and translation to Ada from CMS-2 and
Jovial.

3. XinoML, the Xinotech Meta–Language

The language-based, language-independent infrastruc-
ture of the Xinotech environment is provided by the
implementation of XinoML. XinoML is a highly-readable
language for specifying the abstract grammar, external
syntax (views) and semantics of languages. XinoML is an
environment metalanguage, because it supports the
design, implementation, embedding, revision and
evolution of the various languages used in a software
development environment, such as specification,
documentation, design, programming, testing, and
configuration languages. XinoML provides support for
quick language prototyping, reusable language
descriptions through module decomposition and inherit-
ance, inter- and intra-language transformations, and sepa-
ration of embedded and annotation languages. It provides
an open architecture for integration to other traditional
semantic analysis tools such as STARS ASIS for Ada.

XinoML supports modules for the hierarchical
decomposition of languages. Modules are collections of
related symbols. Modularization allows the language
designer to logically divide the specification to enhance its
readability. A language specification can import modules
from other XinoML specifications. This encourages
reusability when prototyping new languages.

 3

A construct is defined in terms of its intrinsic
language properties, such as abstract grammar, views
(unparsing syntax) and semantics. Other clauses describe
details for the environment, such as menus, placeholders,
etc.

XSSL, the Xinotech Semantic Specification
Language, is a component of XinoML. XSSL is a general
notation: it supports, e.g., the expression of Ada scoping
rules, type checking, data flow relations, and language
translation. XSSL supports structured types and
generalized lists, and it incorporates efficient abbreviation
schemes to reduce the complexity of expressions due to
explicit semantic flow. It uses object-oriented
encapsulation to achieve the reuse of semantic structures
throughout multiple constructs. XSSL supports
incremental evaluation as well as the semantics of inter-
compilation-unit relations.

4. XPAL and Pattern Abstraction

Pattern or plan abstraction is the transformation
process of automatically condensing or abstracting low-
level source code patterns found in existing software into
high-level program concepts. XPAL. the Xinotech Pattern
Abstraction Language, a declarative, constraint language,
is the vehicle to express these program patterns and their
transformations. Since XPAL is a component of XinoML,
the Xinotech Meta-Language, these transformations can be
written for any language specified with XinoML.
Therefore, the entire mechanism is language independent.

Pattern abstraction is valuable because it recognizes
implied or concealed relationships in low-level source
code and, by representing them with existing higher-level
structures, makes the relationships explicit and conceptual,
and the code more cohesive and less fragmented. This
reduces the complexity of the representation while increas-
ing the expressive power of the resulting programs, thus
enhancing its maintainability, understandability and reus-
ability. This process is the inverse of top-down synthesis,
such as program compilation.

In XPAL, patterns can be specified in terms of other
patterns. Because XSSL, a component of XinoML, is a
general notation for expressing the semantics of languages,
patterns can use or complement these semantic equations.
The approach traditionally taken in designing
reengineering environments is that of providing some
semantic capabilities through a limited set of hard-coded
functions. In the XinoML family, graph operations, such
as transitive closures for data and control flow, can be
specified on the relationships characterized by XSSL
equations. A language this comprehensive makes pattern
abstraction very powerful.

Advantages of having XPAL as a component of
XinoML. Because the XPAL notation is embedded within
XinoML, it has the advantages of full access to the
abstract grammar and semantics of the programming
language, access to a general semantic notation, the use of
XinoML extraction mechanisms, such as parsing views, to
express tree patterns textually, and the use of multiple
views which allow syntactical transformations to be
expressed in the syntax of the programming language.

5. The Xinotech Program Composer

The Composer is the central application tool built on
top of the XinoML language infrastructure. It is a syntax-
driven, interactive semantic tool for the design and con-
struction of programs. Programs are managed as abstract
syntax trees (AST), with multiple textual representations
or views. An incremental parser and an incremental
unparser provide the mappings between the textual and
the AST representations. One of the main areas of concern
during the design of the Composer was the functionality
and behavior of its incremental bottom-up parser. This
parser was designed to support a smooth left-to-right
insertion while providing full interactive language support
such as automatic template generation, placeholders,
menus, and formatting while typing. The user can select
levels of template generation during insertion. Templates
are non-intrusive, since the user can type over to skip
optional clauses. Text files not created with the Composer
are automatically imported the first time they are opened.

Views can be used to create multiple formatting
schemes, or to combine or isolate programs with
embedded documentation and/or PDL structures. The
Composer supports browsing through libraries, and
provides program outlines from any point in the program.

6. The Graph Abstractor

The Graph Abstractor is an analysis and
maintenance tool designed to display XSSL-generated
semantic relations. These relations can be displayed
graphically or structurally. The Graph Abstractor is
designed to minimize the size complexity of graphs and
isolate the relations of current relevance.

7. The Guideliner

The Xinotech Guideliner is an interactive program
analyzer. It verifies adherence to programming guidelines,
standards and metrics, and transforms programs automati-
cally to comply with these guidelines. These guidelines
are written using XPAL. The design goals of the
Guideliner were as follows:

 4

1. To provide an integrated, incremental capability to
prevent and/or detect and flag user-defined guideline
deviations during interactive program construction with
the Composer.

2. To provide batch processing to obtain detailed and
statistical reports regarding non-compliance with user-
defined guidelines and standards. This can be useful
during the quality assurance phase of code acceptance
from contractors.

3. To provide the automatic translation of source code to
comply with user-defined guidelines and standards.
This process can be applied to any source code, regard-
less of whether it was created with the Composer.

4. To provide a wide range of metrics measurements that
can be requested by the user as part of the guidelines
and standards to be analyzed.

8. Reengineering Applications

XPAL is a general language for program recognition
and transformation. It can be used to:
1. Translate programs from one language to another, such

as CMS-2 or Jovial to Ada.
2. Detect and correct violations of user-defined guidelines

and standards.
3. Transform existing non-00 programs into object-

oriented programs.
4. Port existing programs from one supporting library to

another. This helps automate migration to newer stan-
dard libraries, or to different operating systems and
hardware platforms. As new libraries are created,
existing applications can be searched for potential
matches, so that the application can be modernized and
expressed in terms of the new reusable components.

5. Modify the meaning of programs. Transformations can
be written to modify existing programs so that they
perform new functions, thus helping create new appli-
cations from existing ones.

6. Apply isolated transformations interactively. XPAL
libraries can be created to generate bodies out of
package specifications, to split packages or procedures,
improve module decomposition, etc.

8.1 Language Translation
Typically, language conversion is an abstraction pro-

cess, very much the opposite of top-down synthesis or
compilation. This is the case whenever the target language
is a higher-level language, as in the case of translating
CMS-2, Jovial or FORTRAN to Ada. Compilation tech-
nologies do not lend themselves well to this process, and
pattern abstraction is highly desirable so that low-level,

implicit, global relationships can be identified and ab-
stracted into explicit higher-level constructs. XPAL was
designed to support such abstraction. These are some
examples of XPAL applications when converting CMS-2
to Ada:
1. Patterns can be defined to map different operating-

system dependent multi-tasking models in CMS-2 to
the construct-based tasking model in Ada. These
transformations can be done very effectively since
they are a classic example of implied relationships
made explicit by the abstractor. Patterns can be
written for the following:
i. Building the multi-thread task structures out of

CMS-2 modules and entry point tables.
ii. Building the "Message_Center" task out of the

specification of the message broadcasting table
for the linker.

iii. Abstracting concurrent critical regions by
localizing and encapsulating the shared data into
tasks, from the fragmented test-and-set protected
access semaphores found in CMS-2. Such
abstraction supports code migration towards an
object-oriented methodology.

iv. Customizing patterns to support the direct
translation of CMS-2 library procedures for some
of these functions (e.g. critical regions), if they
exist.

2. Abstracting block structure such as for, while and
exit-based closed loops from goto-based control flow.

3. Creating procedures to modularize code or to elimi-
nate unstructured loops, and creating enumeration
types from sets of constants and related variables.

These are some of the advantages of XPAL-based
translation:

1. Fully Customizable. This is a requirement for the case
of CMS-2 or Jovial to Ada, since the translation will
depend on the dialect, the executive in use, and library
and other environment dependencies, as well as on the
customization of the translated code to Ada guidelines
such as the STARS Ada Reusability Guidelines.

2. Fully reusable during subsequent system evolution.
Components developed for translation, since they are
language-independent, can be used interactively dur-
ing continuing Ada development (as Ada-to-Ada re-
engineering tools).

3. Powerful dual translation and development environ-
ments. Part of the success of the reverse-engineering
process (i.e. translation) depends on how well it is
integrated with the forward-engineering process (i.e.
development). Such integration dictates the success of
the translation system for interactive use.

 5

4. High-quality of the resulting code. By devising so-
phisticated schemes for code abstraction, the transia-
tor designer can make more comprehensive use of the
features of the target language (e.g. Ada). This results
in more condensed and readable code. By not discard-
ing the original implementation through a very-high-
level intermediate language, this approach is able to
maintain comparable efficiency levels.

5. Predictability. The Xinotech approach, using external
specifications for the translation, allows the user to
verify and approve in anticipation, the ways in which
source language structures have been chosen to be
translated. In a system where the implementation was
discarded, the efficiency of the resulting code would be
completely unpredictable.

6. Life Cycle Orientation. The XPAL-based approach
takes into account the fact that the translated system
will continue to evolve, so tailored patterns can prepare
it for further growth, by supporting 2167A docu-
mentation generation and traceability with the PDL of
choice, extraction of high-level graphs, and compliance
with user-defined standards.

7. Formally Specified Translation. Another advantage of
using formal specifications is that they provide a highly
modular and functional decomposition of the
translation system, resulting in an accessible mecha-
nism for verifying the translator's reliability.

8. Low-risk Development Path. This is the result of two
factors: predictability, and the fact that this technology
is implemented progressively, with practical appre-
ciable benefits available from day one. These benefits
continue to grow in proportion to the resources in-
vested in the project. Its success can be measured and
monitored throughout the development effort.

8.2. Support for Ada 9X Compliance and Ada
9X Philosophy

The Xinotech transformation environment includes a
set of Ada 9X transformation libraries to support Ada 9X
compliance as well as Ada 9X philosophy. In mm, these
libraries are managed by the Guideliner's user interface.

Support for Ada 9X Compliance. The environment
provides a library of transformations to automatically
translate the 9X violations in existing Ada 83 sources to
the Ada 9X standard. These transformations can be
applied interactively or in batch mode: the result is
compilable Ada 9X code. This library is used to translate
to 9X for compliance, even though the resulting code may
not be object oriented (00) or otherwise embody Ada 9X
philosophy in any way.

Support for Ada 9X Philosophy. An additional library
transforms 9X-compliant programs into a model support-
ing 00 and 9X philosophy. The 00 Ada 9X programs
resulting from these transformations take advantage of
9X-specific features for modularization, object-
orientation, parallelism and synchronization. Examples:

1. Transforming a package into a hierarchy with
children packages. This supports improved
modularization by allowing the direct sharing of
declarations among a closely-related family of
packages.

2. Transforming Ada structures to support explicit Ada
9X vectorization. A few of these cases can be
detected automatically. Conversely, the user is able to
invoke these transformations interactively.

3. Transforming a synchronization model into one with
explicit protected records. In some cases, the old
synchronization model can be derived from the usage
of a particular library.

4. Transforming record types with variants to tagged
types with extensions. This transformation is
requested by the user for a particular record type with
variants. The particular record type is analyzed to
determine if the transformation is possible, and if so,
the transformation is performed. This transformation
takes advantage of multiple dispatching to enhance
the readability, object-orientation, and reusability of
the code. The simplest such case involves a record
with a single variant whose discriminant is a value of
an enumeration type.

8.3 Real-Time Prototyping Environments
XPAL can be applied to support specification or

prototyping languages such as Luqi's PSDL. [19], [22]
Besides providing an integrated, interactive front-end for
PSDL, XPAL can be used to verify adherence to design
methodologies, to synchronize graphical with structured
editing, and to map between specification and implemen-
tation languages.

8.4 Object Abstraction
Object abstraction is the process of recognizing rela-

tionships in existing, non object-oriented (00) Ada pro-
grams, and transforming these programs into a higher-
level, object-oriented architecture with reusable compo-
nents.

00 design methodologies have been in use for some
time, and are very useful in helping to understand the
behavior of systems and relationships between compo-
nents (objects). It seems natural that obtaining an object-
oriented design view of existing non-00 source programs
through reverse-engineering will:
1. Help us understand the intended behavior of a system .

and its relationships.
2. Allow us to capture this 00 design in an 00 design

language that can be manipulated textually or graphi-
cally by design tools, thus making it possible to use
forward engineering (FE) technology to analyze,
modify and browse through the design.

3. Allow us to restructure or redesign the existing code so
that it conforms to the recaptured OO design.

 6

Examples of XPAL for Object Abstraction.
1. Transforming exported data objects into abstract data

types. Data objects will be hidden, and made available
only through access methods (procedures). This in-
cludes the automatic creation of initialization and
finalization methods for the data types.

2. Transforming program units into reusable blueprints
(e.g. generic units in Ada).

3. Transforming sets of variables into object classes by
hiding them in structured types with access methods.

4. Transforming variant record types into a base class
with subclasses (e.g. Ada 9X tagged types with exten-
sions). These transformations will take advantage of
multiple dispatching to enhance readability, object-
orientation and reusability.

9. Benefits

9.1 Benefits for Ada 9X

This environment represents a rather extensive solu-
tion for Ada reengineering, because it automates the evo-
lutionary migration, from the legacy systems written in
the proprietary languages of the sixties, towards the full,
object-based, design philosophy of Ada 9X. For example,
it can be used to:
1. Translate CMS-2 or Jovial programs into Ada.
2. Translate Ada 83 programs into Ada 9X.
3. Support the object-orientation of existing Ada code,

according to the philosophy of the new Ada 9X fea-
tures, thus enhancing reusability.

4. Automate the porting of existing Ada applications to
new Ada 9X standard libraries, thus enhancing the
inter-changeability of the application components.

5. Automate transformations to change the meaning of
existing programs, thus supporting the adaptation of
existing programs to new applications.

 7

9.2 General Benefits
Support for All Languages in the Life Cycle. Pattern

abstraction can be applied to all the languages in the
software life cycle, from specification languages, to 00
design languages, to annotation languages, programming
languages, etc. XPAL may be used to automate top-down
translation during program development, or to abstract
design and specifications during reverse engineering.

Interactive Transformation Environment. Transfor-
mations can also be applied interactively during program
construction. Forward and reverse engineering are thus
integrated in a single homogeneous environment.

Support for Multiple Programming Languages.
Through XinoML, the same homogeneous language-
based environment is available for many programming
languages. This is particularly attractive for translation
between dialects. The Xinotech environment can also be
instantiated (very cost effectively), for specialized
languages, such as VHDL and database languages.

Open Architectures. The existing Xinotech environ-
ment supports the client-server model of an open
heterogeneous architecture with a graphical user interface.

An Integrated Environment. Xinotech's approach was
to create an integrated semantic environment for syntax-
directed program construction, as well as for analysis and
transformation. Forward and reverse engineering are
indistinguishable. Vast transformation libraries can be
expressed and customized with a metalanguage for pattern
abstraction.

10. Bibliography

[1] Ada 9X Project. Ada 9X Requirements. Office of the
Under Secretary of Defense for Acquisition, Washing-
ton. D.C., December 1990.

[2] K..A. Bannick. Breakdown of Software Expenditures
in the Department of Defense, United States and in the
World. Master's Thesis, Naval Postgraduate School,
Monterey, CA, Sept. 1991.

[3] B. Barding, C. Thompson. Composable Ada Software
Components and the Re-Export Paradigm —Parts 1
and 2. ACM SIGAda Letters VIII (1); pp. 58-79,
1988.

[4] Boyle, J.M., Muralidaran, M.N. Program Reusability
Through Program Transformation. IEEE Transactions
on Software Engineering, vol. SE-10, no. 5,
September 1984

[5] C.L. Braun,J.B. Goodenough, R.S. Eanes. Ada
Reusability Guidelines. Technical Report 3285-2-
208/2, SofTech, Inc., Waltham, Massachusetts,
Revised 1991.

[6] P.T. Breuer and K. Lano. Creating Specifications
from Code: Reverse-engineering Techniques. Journal
of Software Maintenance: Research and Practice,
John Wiley and Sons. 1991. Reprinted in Software
Reengineering, by Robert S. Arnold. IEEE 1993.

[7] Gianluigi Caldiera, Victor Basili. Identifying and
Qualifying Reusable Software Components. IEEE
Computer, Feb 1991. Reprinted in Software
Reengineering, by Robert S. Arnold, IEEE 1993.

[8] G. Canfora, A. Cimitile, and U. de Carlini. A Logic-
Based Approach to Reverse Engineering Tools
Production. IEEE Trans. on Software Eng., Vol. 18,
No. 12, December 1992.

[9] A. Cimitile and U. de Carlini. Reverse engineering:
Algorithms for Program Graph Production. Software
Practice and Experience, Vol 21. pp 519-537, 1991.

[10] W. Cunningham, K. Beck. Constructing Abstractions
for Object-Oriented Applications, Journal of Object-
Oriented Programming, 2,2,17-19, August 1989.

[11] W.L. Frank. What limits to software gains ?
Computerworld, pp 65-70, May 4, 1981.

[12] E. Horowitz, J.B.Munson. An Expansive View of
Reusable Software. Software Reusability, Vol. I,
Edited by T.J. Biggerstaffand A.J. Perlis. ACM Press,
1989.

[13] S. Horwitz and T. Teiteibaum. Generating Editing
Environments Based on Relations and Attributes.
ACM Trans. on Programming Languages and
Systems, Vol 8, No 4, Oct 1986.

[14] Ivar Jacobson, Fredrik Lindstrom. Re-engineering of
old systems to an object-oriented architecture. Proc.
OOPSLA, 1991. Also reprinted in Software
Reengineering, by Robert S. Arnold, IEEE 1993.

[15] Gail E. Kaiser, Simon Kaplan. Parallel and
Distributed Incremental Attribute Algorithms for
Multiuser Software Development Environments.
ACM Transactions on Software Engineering
Methodology, January 1993, Volume 2, Number 1.

[16] K. Koskimies, 0. Nurmi, J. Paaki. The Design of a
Language Processor Generator. Software -Practice
and Experience, Vol. 18 (2), Feb. 1988.

[17] Richard D. Linger. Software Maintenance as an Engi-
neering Discipline. Proc. Conf. on Software Mainte-
nance, pp 292-297. Reprinted in Software
Reengineering, by Robert Arnold, IEEE 1993.

[18] S.S. Liu, and K..R. Johmann. A Tool Specification
Language for Software Maintenance: Part 1 —
Language Design, Part II —Usage. SERC Technical
Report 36F, CSci Dept., University of Florida at
Gainsville, November 1989.

[19] Luqi, V. Berzins, R. Yeh. A Prototyping Language
for Real-Time Software. IEEE Trans. Soft. Eng., vol.
14, October 1988.

 8

[20] D. Maier,and D.S. Warren. "Computing with logic".
The Benjamin/Cummings Publishing Co. Menio
Park, CA, 1988.

[21] B. Meyer. Software Reusability: The Case for
Object-Oriented Design. IEEE Software 4(2), 50-64,
1987.

[22] F. Naveda. Specifying a Prototyping Language in the
Cornel] Synthesizer and the Xinotech Program Com-
poser for an Integrated Programming Environment.
Proceedings 2nd IEEE International Conference on
Systems Integration, IEEE, June 15-18, 1992.

[23] D. Pamas, P. Clements, D. Weiss. Enhancing
reusability with information hiding. In Proc.
Workshop Reusability in Programming, Sept. 1983,
pp 240-247.

[24] William W. Pugh Jr. Incremental Computation and
the Incremental Evaluation of Functional Programs.
Ph.D. Dissertation, Comell University, 1988.

[25] T. W. Reps, T. Teitelbaum, A. Demers. Incremental
Context-Dependent Analysis for Language-Based
Editors. ACM Transactions on Programming
Languages and Systems, Vol. 5, No 3, July 1983.

[26] D.S. Rosenblum. A Methodology for the Design of
Ada Transformation Tools in a DIANA
Environment. IEEE Software 2(2):24-33, March
,1985. Also as Stanford CSL Technical Report 85-
269, February, 1985.

[27] Robert W. Schwanke. An intelligent tool for re-
engineering software modularity. Proc. Int'l Conf. on
Software Engineering, IEEE 1991. Also reprinted in
Software Reengineering, by Robert S. Arnold, IEEE
1993.

[28] I. Silva-Lepe. Abstracting graphed-based
specifications of object-oriented programs. Tech.
Report NU-CCS-92-4, College of Computer
Science, Northeastern University, March 1992.

[29] A.I. Wasserman. P.A. Pircher, R.J. Muller. The
Object-Oriented Structured Design Notation for
Software Design Representation, IEEE Computer,
March 1990.

[30] Waters, R.C. Program Translation via Abstraction
and Reimplementation. IEEE Trans. on Software
Eng., August 1988

