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1  Introduction

CardProfit is a strategic business intelligence software application for the banking industry, used to establish  
and manage the profitability  of  credit  card and payments products in  multidimensional segmented markets. 
Segments, represented through a collection of standardized unit indicators, can then be universally compared in  
order to establish benchmarks and isolate potential value identification to support goal setting, goal valuation and 
monitoring.  See www.eknowlogie.com/CardProfit. 

Business performance can be isolated by simultaneously segmenting the market by credit card product, product  
type, cardholders' geographical location, age groups, income, payment habits, lifestyle, transactional volume, 
marketing campaign account harvests, time series etc.   These segment intersections can then be compared 
very effectively.  In addition, arbitrary grouping segment hierarchies can be created for each segmentation in 
order to find the largest segment groups where clear differentiators apply.  For example, geographical location 
can respond to hierarchies by zip code, county, state and country, or by rural, agricultural, industrial and high-
tech regions.  Credit card products can respond to hierarchies by brand or by product type.  Time series can 
respond to hierarchies by day, week, month, quarter and year, or by shopping seasons.
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Because of the large volume demands, it  was determined that for the new CardProfit  version,   operational,  
segmentation  and  intelligence  information  would  be  persisted  using  a  distributed  parallel  architecture  with  
Hadoop and HBase, likely under an elastic cloud computing framework such as Amazon AWS EMR.  This would 
be a distributed system where multiple credit card issuers could maintain their own localized clusters and still 
belong to larger  multi-issuer clusters  where national  and international  standard indicators could  be derived, 
(under certain rules for jurisdiction and anonymity).

1.1 Distributed Big Data Store Selection

Cassandra [Lakshman09], based on Dynamo [DeCandia07], offers a very elegant, truly distributed architecture 
based on two concepts, the ability of node peers to establish a partial ordering of events using vector clocks 
(which stems from Leslie Lamport's beautiful seminal paper on the subject [Lamport78]), and consistent hashing,  
the ability for any node in the cluster to locate data hosted at  any other  node.  While Cassandra offers a  
distributed architecture with no single points of failure,  it does not offer a native aggregation framework which is  
indispensible in order to support our analytical extractions.  HBase [George11] on the other hand is designed to  
provide extensive native support for map reduce, a distributed framework for big data aggregation.  HBase does  
have a JobTracker node that represents a single point of failure, but along with the NameNode server they 
provide  flexibility  to  manage  region  splits  to  support  “configurable  sharding”  which  is  a  very  desirable 
complement to map reduce in order to optimize the localization of mapper jobs specially when these mappers 
require the use of multiple input tables.  This requirement to manage partitions is best served with the ordered  
partitioning supported by HBase.   Cassandra,  by contrast,  favors  random partitioning which would  make it  
impossible to implement the envisioned localized multi-table mappers of many map reduce jobs.  In other words, 
HBase is more suited for data processing and analytics (aggregation) while Cassandra more suited for real-time 
transaction  processing.   While Cassandra's  eventual  consistency will  provide  identical  behavior  to  HBase's  
strong consistency for a primarily batch update system like ours, Cassandra's lack of cell versioning support 
would require yet additional explicit support for the representation of historical state. So the decision is made for  
us: HBase. 

2  Problem Domain

This problem domain belongs to a very general  data aggregation problem category:  Domain analytics  over  
multidimensional and multi-hierarchical data aggregation.

Aggregate data provides bird's eye views of a space or problem domain.  In order to achieve differentiation in the  
problem space, aggregate information needs to be classified or subdivided according to one or more variables,  
e.g. the number of sales of a given retail product within a geographic location and purchased by consumers 
within a certain income bracket, education level, hobby profile and during a given time period.  If we see each 
such variable as a dimension in a n-dimensional Cartesian space, these aggregates correspond to the Cartesian 
products of that space.  In market analysis, if we see each variable as a market segmentation, these aggregates 
correspond to segment intersections.  

Even  though  Cartesian  products  give  us  a  most  valuable  microscopic  differentiation  between  aggregate 
information,  they also  create  a  combinatorial  explosion of  values.   Domain analytics  will  further  benefit  by 
characterizations made about these variables at different levels of abstraction or grouping levels so we allow any 
number of hierarchies to be defined over each variable, dimension or segmentation.  These grouping levels may 
also be essential in the accurate creation of domain models, such as grouping by brands, subsidiaries, sales 
jurisdictions  etc.   So  for  example,  retail  products  can  be  classified  according  to  price  range,  purpose,  
manufacturer, consumer profile or essential need hierarchies.  Geographic locations can be classified according 
to geographical region hierarchies such as zip, county, state and country, or demographic hierarchies (rural, 
agricultural,  industrial,  manufacturing and technological).    The root of each hierarchy is the collection of all  
values  for  that  given  dimension  (expressed  as  a  wildcard  “*”)   which  in  turn  represents  the  reduction  or 
elimination of  that  dimension in  the Cartesian space.   So the number of  sales of  cameras SLR-X can be  
expressed as Number of Sales (cameras SLR-X, *, *, *, *, *), and the grand total number of sales as Number of 
Sales (*, *, *, *, *, *).

These problem spaces are typical, among others, of trend and market analysis and statistical studies to find 
correlations, dependent and independent variables in the cause of diseases, hormonal deficiencies, etc.
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3  A Relational Design

Segmentation data models typically do not exist in relational systems because segmentations would need to be 
bound to the primary key structure, and because of volume and performance constraints.  In a relational system,  
space  segmentation  is  an  extension  of  the  operational  model,  where  segmentations  correspond  to 
unidimensional aggregation over the primary keys in the model, so if we identify products by primary key, we are  
likely to represent aggregations by product, and generalized segment intersections will be non-existent.  

4  An HBase Distributed Parallel Design

As we design a distributed HBase architecture, one of our requirements will be segment intersection access in  
O(1) (i.e. in a time complexity of a single row access).  Consider the following segmentations for a typical credit 
card product:

Credit Card Segmentations

Segmentation Number of Values
Issuers ?

Credit card brands 5 to 10

Products Depends on the issuer

Credit limit brackets 10

Income brackets 10

Education brackets 6

Geographic locations (zip codes) 43000

Transaction types 3

Incoming interchange types 3

Time periods daily

The table above suggests 232.2 million segment intersections or rows per product daily.   If  we assumed a 
modest row size of 100 bytes for a segment intersection table, that would require 23.22 gigabytes of storage per  
product per day.  If for a given issuer we assume 200 products, a five year history of segment intersections  
would require  8.47 petabytes of storage for that issuer.  This excludes segment intersections for any of the 
hierarchy groups in each of the hierarchies of each segmentation.

This also remains a time-series problem simply because one of these segmentations is likely to remain time-
stamps  or  time  periods  and  because  the  operational  input  into  the  system  will  represent  a  time-series  
progression.  The implication of this being that row key design is likely to include time-series information with  
appropriate prefixing for load balancing.

4.1  Persistent Layer Design

The data model represented in our HBase design can be divided conceptually in three distinct layers as follows.

• The Operational Layer.  This layer contains the history of daily activities of the business.
• The Segmentation Layer.  This layer contains the precomputed statistics of all the segment 

intersections in the market, and it is derived from the operational layer.
• The Intelligence Layer.  This layer contains intelligence information about the business such as 

benchmarks, performance analysis and goals, and it is derived from the segmentation layer.
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4.1.1 The Operational Layer

This layer is simply the HBase equivalent of a classical credit card relational operational model.  It includes  
issuers,  brands,  products,  accounts,  transactions  and  expenses,  with  perhaps  a  minor  difference  in  that 
historical state is preserved.  The fact that both relational and distributed models are otherwise equivalent in  
content serves to showcase their differing purposes, usage and contrasting architectural design.

The relational model is populated interactively as operations, transactions, occur.  The distributed HBase model 
is populated periodically using batch bulk loads or tools such as Sqoop.

The relational model is used primarily to retrieve isolated itemized information real time.  Needless to say, the 
intention  of  the  distributed  HBase model  is  not  to  be  able  to  access  a  specific  transaction  in  O(1).   The 
distributed operational  model  is  used as  the source to  populate  the  aggregate Cartesian product  of  an n-
dimensional  Cartesian  space  in  the  segmentation  layer.   While  for  the  relational  model  normalization  is  a  
desirable goal,  for the distributed HBase model,  denormalization is the norm: composite keys in the HBase 
model  are  designed  to  create  proper  load  balancing,  but  more  importantly,  inter-table  scan  locality  via  
synchronized  region  splits  for  efficient  joins  in  MapReduce  operations  that  produce  these  combinatorial  
explosions making up the Cartesian space.  

Depending  on  a  historically  changing  account  profile,  accounts  will  contribute  to  different  segmentations 
throughout their lifetime (e.g. if the account holder's address or income bracket change in the account).  In order  
to preserve historical state for these accounts, it is necessary to create a new account record every time an  
account historically-relevant state changes.  To accomplish this it is sufficient to make use of HBase's time-
stamped row versioning infrastructure.  This way new records are created only when changes occur and the 
exact  time-stamp  of  change  is  maintained  during  the  construction  of  the  segmented  intersection  space.  
Because  it  is  likely  these  accounts  will  be  accessed  incrementally  for  progressive  time-series,  the  time 
complexity of the retrieval will likely remain O(1) as only the most recent record will need to be accessed, or a  
worst case of O(t) where t is the number of historically significant change periods which have occurred for the 
account lifetime.

Operational Layer Design Comparison

Relational Distributed
Input is real-time from interactive operations. Input is batch bulk loading from relational import.

Output is real-time and fine-grained batch. Output is batch via bulk MapReduce.

Purpose is the interactive retrieval of current data, 
financial and transactional reporting.

Purpose is to produce full historical aggregations for 
segment intersections. 

Credit card transactions are normalized, primarily 
retrieved by transaction or account id.

Credit card transactions are denormalized, grouped by 
product, account and date for localized scans.  May 
never be retrieved by transaction id.

Keys for different tables largely independent of each 
other.

Heavily composite keys for different tables provide 
common prefixes in order to localize inter-table 
relationships into common region servers to support 
efficient MapReduce and load balancing.
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4.1.2  The Segmentation Layer

The segmentation layer is derived by MapReduce algorithms from the operational layer.   The goals of this  
derivation is as follows:

1. MapReduce  must  be  incremental  on  the  time-series  dimension.   We want  to  be  able  to  populate 
segment intersections for progressive time periods.  This is trivial and it only means that more recent 
operations can be processed independently of  previous operations and such operations need to be  
processed only once in their lifetime.  

2. MapReduce must be incremental on arbitrary dimensions.  We want to be able to populate segment 
intersections for specific segmentation values without requiring that all segment values be available.  So 
for example, if operational values for a given issuer and product are available, we want to be able to 
produce  all  segment  intersections  which  contain  those  specific  issuer  and  product  values.   These 
segment intersections are partial because of missing values for other issuers and products.

3. MapReduce  computational  complexity  must  be  O(n)  on  the  number  of  operations  (credit  card 
transactions).  That is, we want to process each transaction once and only once.  Incremental algorithms 
are attractive because presumably they reduce the time complexity of their exhaustive counterparts, and 
thus this is stated in our goals.

4. Region splits must be distributed by credit card issuer and product sub-clusters  Sub-clusters for issuers  
and their products can be maintained autonomously and be geographically dispersed from multi-issuer 
aggregation clusters.  

5. Segment intersection availability to the intelligence layer must be O(1) for specific intersections and O(n)  
for a time-series of n periods.  This means that the key for any specific segment intersection can be  
formulated and its row retrieved directly.   This also means that the time-series for a given segment  
intersection will be contiguous in the HTable so that a table scan can be formulated with the exact scan 
range in order to avoid visiting unrelated rows.  This will allow the intelligence layer to perform efficient 
retrieval of specific segment intersections.

With the goals stated above we achieve the following benefits:

1. A single HBase table can be used for separate issuers and separate products in isolation.  Product  
segmentations can be updated independently when the product operational data becomes available,  
and  in  clusters  localized  and  controlled  autonomously  by  the  owner  issuer.   Availability  of  the 
segmentation  and  intelligence  layers  for  a  given  product  and  issuer  depends  exclusively  on  the 
availability of the operational data for that issuer and product.

2. Consolidated global multi-issuer segmentation and intelligence information can still be made available 
when and to the extent operational data from all the issuers becomes available.

3. Multi-user segment and intelligence information can be made available according to security rules, e.g. 
to maintain issuer and product anonymity to other issuers.  Bank conglomerates can maintain anonymity  
between subsidiaries while allowing full visibility to conglomerate directorate for accurate supervision 
and management.

4.1.2.1 Populating the Segment Layer with MapReduce

In  order  to  fully  populate  the  segment  layer  (the  segment  intersection  table)  and  in  order  to  satisfy  the 
MapReduce  goals  enunciated  earlier,  we  will  need  three  kinds  of  MapReduce  operations.   Because  we 
understand  the  n-dimensional  Cartesian  space  as  leaves  in  the  hierarchy  trees  for  each  dimension.   This 
process consists of fully populating these hierarchy trees, where the leaves are the segment intersections in the 
Cartesian space.  The first step consists of populating segment intersections in the hierarchy leaves from the  
operational layer.  Subsequent steps consist of aggregating or disseminating these values throughout the rest of  
the hierarchical tree structures.

4.1.2.1.1  Seeding the Segment Layer from the Operational Layer

Composite  keys  in  the  HBase  operational  layer  are  designed  to  create  proper  load  balancing,  but  more 
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importantly, inter-table scan locality via synchronized region splits for efficient joins in MapReduce operations 
that produce these combinatorial explosions making up the Cartesian space in the segmentation layer.  Contrary 
to  typical  uses  of  the MapReduce framework,  the  segmentation  layer  output  will  be  much larger  than  the  
operational layer input.  See http://www.biomedcentral.com/1471-2105/11/S1/S15 for another example.

Because of these combinatorial explosions, the use of in-memory combiners prior to reduce operations becomes 
a sine qua non for a significant performance gain.  The performance contributors for this layer are prioritized as 
follows:

1. Inter-table localization.  This is the ability for inter-relating table regions to coexist locally within the same 
region server.

2. The use of in-memory combiners.  Because of the combinatorial explosions produced by the mapper 
step, it is important to reduce this record explosions before they go to local server disk and before they  
migrate outside the region server for reduction.

3. Load balancing.  Making sure these region splits in the operational layer are equal size.  It is important  
that region splits are defined for these tables in the operational layer from creation, even when these  
tables are small and space constraint is not a consideration, as a way to make sure the computational 
load of output combinatorial explosions are evenly distributed from the start.  

While subsequent aggregation from the segment intersection leaves to produce higher levels in the segment  
hierarchies can be aggregated as part of this single MapReduce step, it is not practical to do so because the  
source  information  from the  operational  layer  may not  be  available  timely  so  we  opt  to  have  incremental  
MapReduce operations that can produce these segment intersections as source data becomes available.

4.1.2.1.2  Bottom-Up Attribute Synthesis

Aggregation, such as data consolidation or totalization is a process of synthesis or bottom-up data calculation for  
a  node  in  a  hierarchy  tree  from its  descendant  nodes.    Formulas  need  to  be  devised  to  perform  these 
calculations through the reduce steps in the MapReduce algorithms, such as addition, averaging, minimum or 
maximum, etc.  However, there are some aggregates that do not follow arithmetic formulas.  For example, if the 
number of active accounts for a credit card product is a1, a2, …, a7 for daily periods Monday through Sunday,  
the number of active accounts for that week cannot be derived from the individual daily periods.  For these 
situations, additional data structures must be devised in order to perform these computations.

4.1.2.1.3  Top-Down Attribute Inheritance 

Segmentation intersections in the Cartesian space represent the leaves of the hierarchy trees and the algorithms 
described earlier are used to populate these segmentation hierarchies bottom up.  In practice, not all data may 
be available for these leaves and their values may need to be produced by inheritance from their ancestor  
nodes.  For example, certain expenses may be available for an entire issuer and not for individual products, or  
for monthly periods and not daily or weekly periods.  For these cases, algorithms may need to be devised for 
top-down value distribution using mechanisms such a prorating, curve fitting and interpolation.

4.1.2.2 Incremental MapReduce

Incremental MapReduce algorithms can provide performance increases of an order of magnitude compared to 
cluster  topology  design  and  load  balancing.   They are  all  obviously  intertwined  but  the  anticipated  design 
precedence is that you design for incrementality and that will drive your load balancing and distribution/cluster  
topology approach.  

Incremental algorithms are more general when they apply to changes in existing values as opposed to just the  
addition on new values into the persistent state.  Applications such as search engines would not exist without  
incremental algorithms to update word counts of changing documents. Typically, these algorithms only require 
the  use  of  HBase's  column  versioning  to  obtain  and  propagate  word  count  differentials,  but  other  equally 
essential algorithms are far more complicated requiring the use of more elaborate supporting data structures  
such as dependency flow graphs, etc.
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For this problem domain, a significant performance increase would arise from incremental algorithms to change 
existing  values  which  have  been  modified  or  corrected  (as  opposed  to  data  addition  over  a  time-series 
progression), but due to the sporadic nature of these conditions for this particular problem domain, these kinds of 
incremental algorithms are not reviewed in this paper.

We review two approaches for incremental MapReduce algorithms regarding data addition over a time-series  
progression.  In order for us to be able to schedule incremental MapReduce jobs we will require a scheduler that 
decides which segment intersections will  be (partially or fully) computed during a given MapReduce job and 
specify the appropriate scan ranges for the job.  For this we need additional data structures that depict the 
current  Cartesian coverage (or  progress  state)  of  a  given  data  set  and  the  segment  intersection  table  in 
particular.   Progress state is denoted by a collection of segment intersections that represents the Cartesian  
space coverage provided by the data in question.   Therefore, operational layer bulk imports must be submitted 
along with its segment intersection coverage description.   So for example, bulk import coverage (issuer 453,  
product Visa Classic, *..., Dec 1, 2012), (issuer 453, Visa Gold, *..., Dec 1, 2012) specifies that the values to  
produce all the single value and wild card intersections for Visa Classic and Visa Gold for issuer 453 for the day 
Dec 1, 2012 are being provided by such bulk import job.  When bulk imports with similar coverage for the rest of 
the issuer 453 products have been processed, then the scheduler in turn knows that all segment intersections for 
issuer 453 can be produced.  A schedule job can be represented by the input and output coverage collections, 
where the output coverage collections are automatically derived by the scheduler.  When a MapReduce job  
results in a coverage output of (*...) (all wildcards which symbolize the grand root of all the Cartesian space 
hierarchies), the segment intersection table is in a completed state.

4.1.2.1.2 Discrete Incremental MapReduce

With this approach, the calculation of a segment intersection is not initiated unless all the segmentation values 
for that segment intersection are already available.  In other words, a segment intersection computation will not 
take place unless it  can be fully  computed at  once.   This  is  turn  guarantees data  integrity  during multiple  
MapReduce jobs because this order of precedence guarantees that at most one MapReduce job is modifying a 
given segment intersection.  

The advantage of this approach is its simplicity while the obvious disadvantage is that we are unable to obtain  
any  intelligence  information  over  certain  (higher  level)  segment  intersection  hierarchies  unless  all  of  its 
contributors have been computed.  In practice we may not be able to produce these higher-level segmentations 
because some contributors (e.g. issuers) may be habitually late with their bulk import jobs. 

4.1.2.1.3 Continuous Incremental MapReduce

With this approach, the calculation of all segment intersections for which not all values are available would be 
partially carried out with each MapReduce job.  This means that each MapReduce job will contribute to the grand 
root (*...) of the space.  This approach requires concurrent updates of  segment intersection rows.  An alternative  
approach would be to reuse the discrete scheduling approach for contiguous incremental updates by applying 
new policies for segment calculation triggers other than the discrete requirement that all segment values must be 
available,  while  making sure that  such segment intersection calculations are not  performed concurrently for 
same rows and that we do not wait indefinitely for late data arrival.  This scheduler would still make use of the 
segment intersection coverage collections to configure its MapReduce jobs and to implement its trigger policies.

4.1.3  The Intelligence Layer

With a properly populated hierarchical n-dimensional space, we are ready to apply intelligence algorithms in 
order to produce universal unit indicators and comparative mechanisms to support strategic decision making. 
See www.eknowlogie.com/CardProfit for a description of the intelligence layer for CardProfit.

5  Big Data Java Application Support

Beyond the third-party technologies readily available for the implementation of Big Data applications, such as  
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Apache Hadoop and HBase, there is considerable effort required in providing an inhouse application-specific 
infrastructure. This effort needs to cover the following areas 1) persistent layer independence, 2) persistent layer 
realization, and 3) generic persistent layer access and unit testing.

• Java domain object model independence.  Application development investment needs to be protected 
from the persistent implementation technology in order to prolong the application's lifetime and reduce 
susceptibility to technology variations in the persistent layer.  It is important that the application's domain  
object model can be manipulated independently of the underlying persistent implementation.

• Persistent layer realization.  In order to build these technologies, we need to be mindful of the inter-
disciplinary nature of Computer Science.   Expertise in the following areas is desirable: 

• Incremental  Graph  Evaluation  and Data  Flow Analysis.   Data  dependency  propagation  and 
evaluation using graph inheritance and synthesis can be applied incrementally to provide a more 
significant impact in the performance of the resulting distributed application than cluster topology 
and load balancing, sometimes by an order of magnitude.   They are all obviously intertwined but 
the anticipated design precedence is that you design for incrementality and that will drive your 
load balancing and distribution/cluster topology approach.  For dependency graphs that cannot 
be implicitly derived from HBase tables, Neo4j can be used provided we have the guarantee that 
our dependency graphs will  be small enough to fit in one node.  The moment these graphs 
require sharding, it is likely that any inter-server graph analysis will bring performance to a halt,  
unless domain-specific simplifying assumptions about graph topology can be made to facilitate 
inter-server graph analysis. 

• Distributed, parallel programming. The MapReduce framework is conceptually  a realization of 
classical  distributed  programming.   Existing  distributed  algorithms  are  likely  to  be  directly 
realizable with this framework.

• The target technologies themselves, such as Hadoop, HBase and MapReduce.  

• Generic persistent access layer and unit testing.  For performance reasons, Hadoop and HBase lack 
facilities to manipulate content as Java types.  In HBase all data manipulation is expressed in raw bytes,  
so it  is  crucial to create a rigorous, standardized schema-driven Java class organization in order to 
support key management and so that comprehensive automated unit test suites can be created to verify  
consistent  byte  representations  for  a  changing  object  model.   HBase  content  data  structure  is 
reminiscent of absolute binary programming in the 50's before mnemonic assembler languages were  
built,  with  one  key  difference,  reflection,  which  can  be  used  as  an  infrastructure  for  unit  testing 
generalization and automation, provided we are rigorous in the use of these Java access layers and 
interfaces.

6 The Cloud Client

6.1 Cloud Client Goals

• Do we want to commit to a vendor-specific distributed parallel map reduce implementation for the life 
time of an application?

• Do we want to commit to a concrete vendor-specific RIA presentation framework for the life time of the  
application?

• Conversely, do we want to reuse across application families concrete implementation layers such as 
vendor-specific application-support GUI's?

• Typically, the most intrinsic and valuable asset of an application is its context-specific, domain-specific 
suite of business rules, and that asset is best preserved in separation from the concrete realizations of 
the application so that it is not washed away with the passing fads and fashion trends in the industry.

In the same way as the goals of the cloud application emphasize persistence layer independence (while relying  
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on map reduce algorithms in order to produce a distributed parallel cloud architecture), the goals of the cloud  
client emphasize presentation independence and interchangeability.  Notice in particular that these goals are 
designed to correct  the invasive permeability left  by the MVC pattern which is unable to offer presentation  
interchangeability as that is granted only through presentation separation and client functional autonomy.  These 
are the goals:

1. Interchangeable Concrete Presentations. The cloud client will interact with its concrete presentation 
without any knowledge of the concrete RIA implementation framework.  To be specific, there will be no  
direct or indirect dependencies (package or class references) in the client implementation to a given 
concrete or vendor-specific RIA API such as GWT or JavaFX.  While it may not be a design goal for  
many applications  to  support  interchangeable  presentations,  having  an  architecture  that  supports  it 
greatly simplifies the application by making it functionally self-contained and separate form the concrete 
UI layer.  This eliminates the classical complexities of having complex UI widget tree navigation dictate 
UI component inter-relationships

2. Functional  Client  Autonomy.   A  corollary  of  the  goal  of  concrete  presentation 
interchangeability,  is  that  all  application  functionality  must  reside  autonomously  outside  the 
concrete presentation layer in order to avoid duplication across multiple concrete presentations.  
Because of MVC permeability, there is a fair share of business rules typically written directly in 
the concrete presentation, for example, the manner in which items from two list boxes can be 
interactively merged by the user.  Almost invariably, rules of this nature are hard-coded in the 
concrete presentation, and this goal dictates that such rules be coded in the application itself.  
Without  an  architecture  enforcing  client-presentation  separation,  the  concrete  presentation 
layer's  gravitational  force  will  absorb  rules  that  are  very  closely  related  to  its  operational 
interactivity,  these  rules  are  taken  away  from  the  application  and  appropriated  by  the 
presentation, making the presentation inseparable from the application. This momentum in turn 
forces additional gravitating business rules to be subsequently absorbed and hard coded in the 
concrete  presentation  in  order  to  complement  previously  absorbed  rules,  thus  increasingly 
decaying any presumption of presentation separation.

3. Functionally-Encapsulated Presentation.  It is also desirable, in order to achieve the goals above that 
the concrete presentation is not given access to the client application at all, specifically, that there may 
not  be  direct  or  indirect  references  in  the  concrete  presentation  to  classes  and  packages  in  the 
application. 

6.2 Cloud Client Architecture 

The proposed client  architecture  supporting  the  outlined  goals  consists  of  a  functionally  autonomous,  self-
contained conceptual UI layer which supports MVC, a view and controller organization with access to the client's 
model.  This conceptual UI layer defines private interfaces that interchangeable, anonymous concrete vendor-
specific UI layers must implement.  Communication between conceptual and anonymous  concrete  layers is 
private,  shielding  client  and  concrete  UI  from  knowledge  of  each  other.   A  Spring-style  dynamic  factory  
construction of the concrete UI prevents the conceptual UI from concrete dependencies. In order to provide this 
shield, the conceptual UI must also rely on an application to presentation model adapter.

6.2.1  The Conceptual UI Layer 

This layer describes the application presentation in terms of logical, abstracted, highly simplified components 
and  their  inter-relationships,  thus  characterizing  the  full  presentation  functionality  which  is  available  to  the 
application.  This layer is vendor-independent; it is void of any dependencies into the concrete UI, and therefore, 
it offers no actual rendering capabilities.  In order for this conceptual UI to offer controller capabilities to the 
application, it needs to provide a vendor-independent event broadcasting model as described below.

6.2.1.1  A Doubly-Delegated Event Broadcasting Model

We propose an event broadcasting system with the following characteristics:
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• A Doubly-Delegated Event Broadcasting Model.  Design a doubly-delegated event broadcasting model, 
so that the event transmitter is the delegate of the broadcaster and the event receiver is the delegate of 
the  listener, so the model must clearly identify and separate such roles.  Delegation allows many to 
many relationships.  A broadcaster can initiate multiple separate unrelated broadcasts and a listener can 
listen  to  multiple  event  broadcasts.   Conversely,  a  single  broadcast  can  be  shared  by  multiple  
broadcasters  to  broadcast  events.   Other  arrangements  include  a  peer  organization  where  all 
participants  are  broadcasters  and  receivers.  Delegated  broadcasting  contrasts  with  the  Java 
ChangeListener model where the broadcaster is the transmitter and the listener is the receiver, and 
there is a single generic transmission for any change the given broadcaster is capable of broadcasting.

• Receivers Are Rebroadcasters.  A controller architecture can be made artificially complicated, globalized 
and de-objectified by the need to expose original broadcasters to receivers.  This way, receivers reserve 
their right to privately manage events through local rebroadcasting.  This also reduces the amount of  
unnecessary polling resulting from larger flat global listener lists. 

• Push  and  Pull  Broadcasting.   Normally  events  are  broadcast  or  pushed  by  a  broadcaster.   It  is 
convenient for receivers to be able to individually pull events from their transmitters, for example, in  
situations when a receiver registers late to a broadcast.

• Event Type Safety.  The event type can be extended (e.g. to include payload).  With the use of generics 
for the event type, it is event type safe for the relationship between transmitters and receivers.

• Application Autonomy.  This broadcasting model is self-contained and can be used within the conceptual 
UI layer and the application itself, thus promoting application autonomy without dependencies to vendor-
specific presentation API's. 

6.2.1.2  Application to Presentation Model Adapter

Earlier rich presentation frameworks like Swing relied on a data model of the information being rendered.  Newer 
rich  presentation  frameworks,  such  as  JavaFX  and  GWT,  rely  on  direct  access  to  an  OO  model  of  the 
information (via interfaces, annotations, or binding properties in JavaFX 2).  While this is highly attractive from 
the programmatic stand point, it is unfortunate from the architectural stand point as it promotes a direct incursion 
of the presentation model into the definition of the application's object model.   A domain to vendor-specific  
presentation model adapter is desirable which 1) prevents the concrete UI's access to the application's domain-
specific model and 2)  allows the application's model to be adapted to any chosen concrete vendor-specific 
presentation model.  This adapter would serve to encapsulate the vendor-specific presentation.  The adapter 
implementation options can include one or more of the following:

• Reflection.  This is the most powerful, flexible and general of the alternatives, allowing the adapter to 
take arbitrary application object structures and  visit them reflectively in order to populate presentation 
model interfaces.  If necessary, directives about specific structures can be supplied to these reflective 
visitors via presentation-independent annotations or XML configurations.

• Implementation of Concrete UI Interfaces.  These interfaces should be implemented within the adapter 
and outside the application's  domain model in  order  to mediate  two way interactions between the 
domain and the concrete UI models while preserving the integrity of the application model.

• Presentation-Independent Annotations. Application-specific, presentation-independent annotations can 
still be used as they will remain applicable in the adaptation to any vendor's concrete presentation UI 
model.

• Object  to Data Conversion.   While all  the alternatives above mediate between two object  models, 
adapters could generate simpler data structures such as JSON, and establish a contract with concrete 
UI's that such structures will  be used to populate the UI.  This is more effective when presentation  
widgets represent localized read-only data such as pie and bar charts.  
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6.2.2 The Concrete or Vendor-Specific UI Layer

This layer  implements the vendor-specific components that  render their  conceptual UI  counterparts.  These 
components  will  interact  with  their  conceptual  UI  counterparts  through  a  generic  rendering  contract,  with 
operations to start and stop rendering, supplying presentation models and reporting meaningful events back to 
their  conceptual UI counterparts.   Meaningful  UI  events captured by a concrete UI component can only be 
reported to the component's only visible external point of contact: its owning conceptual UI component.  This  
conceptual UI component is then responsible to control or broadcast the event throughout its conceptual layer  
broadcasting system as it sees fit.

The relationship of visible conceptual and concrete UI components will be one to one.  However, because the 
rendering process is far more complex than the description of their conceptual behavior, there will be far more 
concrete UI components, usually in large widget tree structures, which are built to support the rendition of every 
single conceptual UI component.  It might be expected that the complexity of the conceptual layer, by some 
subjective measure, be perhaps about 20% of the concrete layer (even though the concrete layer does not  
implement controller functionality), which is precisely the reason for the existence of the conceptual UI layer: to  
serve as a simplifying contention wall to the application.

6.2.3 Go4 Design Patterns in the Client Presentation Architecture 
The proposed architecture can always be revisited and rephrased in terms of well known Go4 design patterns as 
follows.  The conceptual UI layer represents a Facade pattern first, and a Bridge pattern second.  It is essentially  
a  Facade  because  the  main  objective  of  the  conceptual  UI  is  to  simplify  the  presentation  model  of  the 
application.  It is also a Bridge because in accomplishing the first goal, it allows us to abstract the concrete or 
vendor-specific  implementation  details  and  make  vendor  implementations  interchangeable.   Injection  of  a 
vendor-specific  UI  is  made anonymously  by  the  conceptual  UI  using  a  Spring-style  Factory  pattern.   The 
application-presentation model adapter makes use of the Adapter pattern because the design intention is to 
maintain full separation of the application and presentation models as they are manipulated by their respective  
clients.

6.2.4  A Brief Example of the Conceptual and Concrete UI Architectures 
The  conceptual  and  concrete  UIs  are  implementations  of  the  UIComponent and  the  Renderer interface 
hierarchies  respectively.   The  conceptual  UI  implements  UIComponents,  and  the  concrete  UI  implements 
vendor-specific Renderers.    Each UIComponent class must specify a static  UIComponentID to identify the 
component by a property name and a collection of renderer types which can be used as concrete renderers for  
this  component.   A  RendererType is  not  part  of  the Renderer  hierarchy,  it  is  just  a  marker  class used  to 
enumerate renderers according to certain distinguishable rendering characteristics.  Similarly, each Renderer 
class must specify a static  RendererID, in order to identify the renderer by a property name and the renderer 
type or types it implements, along with supported layout characteristics such as orientations (vertical, horizontal,  
square).  

So for example,  a UI that  displays a list  of  numeric  values may use a UI component ID that  specifies the 
renderer types which may be used to display such a list, and which may include a TABLE_RENDERER_TYPE, 
a  NUMBERS_LIST_RENDERER_TYPE, and a  LIST_DISTRIBUTION_RENDERER_TYPE.  In turn, renderers 
that implement pie charts and one dimensional bar charts can include the NUMBERS_LIST_RENDERER_TYPE 
in their ID's.  Similarly, a bell distribution curve renderer can also be used to display this list of numeric values  
according to  their  statistical  dispersion.   In  turn,  the concrete  UI  can offer  menus to  select  among all  the 
rendering options available for a given UI component in display.  The UI component ID can also offer a same ID  
event broadcaster so that these menu-driven interactive rendering decisions can be made collectively for all  
instances of UI components with same ID.

A  RendererRegistry is  a  singleton  where  all  available  renderers  ID's  are  posted  for  use.   For  a  given  UI 
component, the registry can then identify the default renderer, as well as all the renderers available for display.  
The renderer mapping and selection process in the the registry belongs to the conceptual layer, it is vendor-
independent, but the registry population is done by the concrete layer.  The conceptual and concrete layers are 
also stratified vertically, with generic libraries at the bottom, and application or domain-specific libraries on top.  A 
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Spring  bean  factory  can  be  used  to  instantiate  the  registry,  renderers  and  special-purpose  renderer 
configurators.

A  UILayout is an extension of the UIComponent hierarchy that has the capability to control the visibility of a  
group of components.  To the extent that these components are displayed for simultaneous viewing, a layout  
must control the spatial arrangement so that they can indeed be visualized simultaneously.  Layout components  
in the conceptual UI will typically remain very abstract and succint, confined to specifying the list of components 
that need to be displayed simultanously.  UI components are not referenced directly by these layouts.  They are 
referenced though UIComponentHolders which hold the UI component in question and provide contextual usage 
information, such as whether the component is optional or required, whether it can be minimized into a layout  
tray or  maximized.   This  way,  UI  components are reusable  by multiple  layouts and other  components.   A 
UIComponentHolder or context can hold one and only one UI component, but a UI component can be held by  
several holders.  Similarly in the concrete layer, a renderer cannot be included directly into a concrete GUI  or  
widget tree (e.g. a JavaFX or GWT component tree).  Instead, it always has to be held inside a RendererHolder 
with equivalent structure: a renderer holder may hold one and only one renderer but a renderer may be held by  
multiple renderer holders.  This way, components can be shared by multiple layouts, and these layouts can be 
switched on the fly without affecting the other layouts.  This architecture lends itself for the implementation of an 
Eclipse-style tile layout with movable tile boundaries, tile tray minimization and maximization.

In the concrete UI, renderers and layouts may be implemented using anonymous arbitrarily complex widget tree  
structures.  The conceptual UI serves to exercise full control over the concrete UI on application-related issues 
while separating itself from these overly complex concrete widget tree implementations.
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